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Proteins 
• Proteins are life’s machines, tools and structures

– Many jobs, many shapes, many sizes
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• Proteins are life’s machines, tools and structures

– Nature reuses designs for similar jobs
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Proteins 
• Proteins are hetero-polymers of specific sequence

– There are 20 common polymeric units (amino acids)
• Composed of a variety of basic chemical moieties

– Chain lengths range from 40 amino acids on up

M K L V D Y A G E



Proteins 
• Proteins are hetero-polymers that adopt a unique fold

M K L V D Y A G E



Proteins 
• Protein folding as a reaction
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Proteins 
• Folded proteins
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Proteins 
• Folded proteins
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Proteins 
• Folded proteins are complex and dynamic molecules
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Molecular Dynamics
• MD provides atomic resolution of native dynamics

PDB ID: 3chy, E. coli CheY 1.66 Å X-ray crystallography
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Molecular Dynamics
• MD provides atomic resolution of native dynamics

3chy, hydrogens added



Molecular Dynamics
• MD provides atomic resolution of native dynamics

3chy, waters added (i.e. solvated)



Molecular Dynamics
• MD provides atomic resolution of native dynamics

3chy, waters and hydrogens hidden



Molecular Dynamics
• MD provides atomic resolution of native dynamics

native state simulation of 3chy at 298 Kelvin, waters and hydrogens hidden



Proteins 
• Folding & unfolding at atomic resolution
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Proteins 
• Protein folding, why we care how it happens
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Many diseases are related to protein folding and / or 
misfolding in response to genetic mutation.



Proteins 
• Protein folding, why we care how it happens
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We need to comprehend folding to build nano-scale 
biomachines (that could produce energy, etc…)



Proteins 
• Protein folding takes > 10 µs (often much longer)
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Proteins 
• Protein folding is the reverse of protein unfolding
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Proteins 
• Protein unfolding is relatively invariant to temperature
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Molecular Dynamics
• MD provides atomic resolution of folding / unfolding

unfolding simulation (reversed) of 3chy at 498 Kelvin, waters & hydrogens hidden



Molecular Dynamics1

• Classically evolves an atomic system with time
– Potential function (a.k.a force field)

• Describes the energies of interaction between atom 
centers

– Integration algorithm
• Time dependent evolution of atomic coordinates in 

response to potential energy
– Statistical sampling ensemble

• Fixed thermodynamic variables, i.e. NVE
• Number of atoms, box Volume, total Energy

1. Beck, D.A.C. Daggett, V. Methods (2004) 31: 112-120



Molecular Dynamics
• Potential function for MD1,2

U = Bond + Angle + Dihedral + van der Waals + Electrostatic

1. Levitt M. Hirshberg M. Sharon R. Daggett V. Comp. Phys. Comm. (1995) 91: 215-231

2. Levitt M. et al. J. Phys. Chem. B (1997) 101: 5051-5061
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Molecular Dynamics
• Potential function for MD1,2

U = Bond + Angle + Dihedral + van der Waals + Electrostatic

b0

1. Levitt M. Hirshberg M. Sharon R. Daggett V. Comp. Phys. Comm. (1995) 91: 215-231
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Molecular Dynamics
• Potential function for MD1,2

U = Bond + Angle + Dihedral + van der Waals + Electrostatic

θ0

1. Levitt M. Hirshberg M. Sharon R. Daggett V. Comp. Phys. Comm. (1995) 91: 215-231

2. Levitt M. et al. J. Phys. Chem. B (1997) 101: 5051-5061



Molecular Dynamics
• Potential function for MD1,2

U = Bond + Angle + Dihedral + van der Waals + Electrostatic
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Molecular Dynamics
• Potential function for MD1,2

U = Bond + Angle + Dihedral + van der Waals + Electrostatic

1. Levitt M. Hirshberg M. Sharon R. Daggett V. Comp. Phys. Comm. (1995) 91: 215-231

2. Levitt M. et al. J. Phys. Chem. B (1997) 101: 5051-5061



Molecular Dynamics
• Non-bonded components of potential function

Unb = van der Waals + Electrostatic

• To a large degree, protein structure is dependent on 
non-bonded atomic interactions
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Unb = van der Waals + Electrostatic
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Molecular Dynamics
• Non-bonded components of potential function

Unb = van der Waals + Electrostatic

NOTE:
Sum over all pairs of N atoms, or

pairs
2

1−∗ NN

N is often between 5x105 to 5x106

For 5x105 that is 1.25x1011 pairs

THAT IS A LOT OF POSSIBLE PAIRS!



Molecular Dynamics
• Time dependent integration of classical equations of 

motion 
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• Time dependent integration 



Molecular Dynamics
• Time dependent integration 

Evaluate forces and 
perform integration for 
every atom

Each picosecond of 
simulation time requires 
500 iterations of cycle

E.g. w/ 50,000 atoms, each 
ps (10-12 s) involves 
25,000,000 evaluations



Molecular Dynamics
• Scalable, parallel MD & analysis software:

in lucem Molecular Mechanics1
ilmm

1. Beck, Alonso, Daggett, (2004) University of Washington, Seattle



Molecular Dynamics
• ilmm is written in C (ANSI / POSIX)
• 64 bit math
• POSIX threads / MPI

• Software design philosophy:
– Kernel

• Compiles user’s molecular mechanics programs
• Schedules execution across processor and machines

– Modules, e.g.
• Molecular Dynamics
• Analysis

CPU CPU

POSIX threads
(multiprocessor machines)

CPU CPU

Message Passing Interface
(multiple machines)

+

VERY high bandwidth
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Dynameomics 
• Simulate representative protein from all folds
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– Nature reuses designs for similar jobs
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Dynameomics 
• Simulate representative protein from all folds

1. Day R., Beck D. A. C., Armen R., Daggett V. Protein Science (2003) 10: 2150-2160.
fold
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150 folds represent ~ 75%
of known protein structures
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Dynameomics 
• Simulate representative protein from all folds

– Native (folded) dynamics
• 20 nanosecond simulation at 298 Kelvin

– Folding / unfolding pathway
• 3 x 2 ns simulations at 498 K
• 2 x 20 ns simulations at 498 K

– Each target requires 6 simulations

=
MANY CPU HOURS



Dynameomics 
• NERSC DOE INCITE award

– 2,000,000 + hours
– 906 simulations of 151 protein folds on Seaborg

– One to two simulations per node (8 – 16 CPUs / simulation)

– Opportunity to tune ilmm for maximum performance



Dynameomics
• Load balancing

– Even distribution of non-bonded pairs to processors

~20%
faster



Dynameomics
• Parallel efficiency 

– Threaded computations on 16 CPU IBM Nighthawk
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Dynameomics 
• Simulate representative from top 151 folds

– 151 folds represent about 75% of known proteins
• ~ 11 µs of combined sim. time from 906 sims!
• ~ 2 terabytes of data (w/ 40 to 60% compression!)
• ~ 75 / 151 have been analyzed
• Validated against experiment where possible



Dynameomics 
• Now what?

– Simulate the top 1130 folds (>90%)
• More CPU time

– Share simulation data from top 151 folds w/ world:

www.dynameomics.org
• Coordinates, analyses, available via WWW
• MicrosoftSQL database w/ On-Line Analytical 

Processing (OLAP)
• End-user queries of coordinate data, analyses, etc.

– Data mining
• More CPU time, clever statistical algorithms, etc.

http://www.dynameomics.org/
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